DarkMatter in Cyberspace
  • Home
  • Categories
  • Tags
  • Archives

Symbolic Integration Tools


Calculate the equations in "Introduction to Probability Models" 11th editon, section 2.3.2:

$$ F(a) = \int_0^a \lambda e^{-\lambda x} dx \qquad a \ge 0, \lambda > 0 $$
$$ \int_0^\infty \lambda e^{-\lambda x} dx \qquad \lambda > 0 $$

WolframAlpha

Integral from 0 to a: Integrate[\[Lambda] e^(-\[Lambda] x), {x, 0, a}]

Integral from 0 to infinity: Integrate[\[Lambda] e^(-\[Lambda] x), {x, 0, Infinity}].

With assumptions: Integrate[\[Lambda] e^(-\[Lambda] x), {x, 0, Infinity}, assumptions -> \[Lambda] > 0].

Or put assumptions outside the expression: assuming[\[Lambda] > 0, Integrate[\[Lambda] e^(-\[Lambda] x), {x, 0, Infinity}]].

Sympy

from sympy import integrate, oo, exp, init_printing
from sympy.assumptions import assuming
from sympy.abc import x, lamda, a
init_printing()
with assuming(a >=0, lamda >0):
    res1 = integrate(lamda * exp(-1 * lamda * x), x)
    res2 = integrate(lamda * exp(-1 * lamda * x), (x, 0, oo))

The display effect of math equations in jupyter notebook is better then in ipython console.

SageMath

%var x, lmd
assume(lmd > 0)
integral(lmd * exp(-1*lmd*x),x)
integral(lmd * exp(-1*lmd*x),x, 0, oo)

No time to implementations in Maxima today.



Published

Jan 19, 2018

Last Updated

Jan 19, 2018

Category

Tech

Tags

  • calculus 1
  • integration 1
  • math 2
  • symbolic 1
  • sympy 2
  • wolframalpha 1

Contact

  • Powered by Pelican. Theme: Elegant by Talha Mansoor